Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Orthopoxviruses (OPVs), including the causative agents of smallpox and mpox have led to devastating outbreaks in human populations worldwide. However, the discontinuation of smallpox vaccination, which also provides cross-protection against related OPVs, has diminished global immunity to OPVs more broadly. We apply machine learning models incorporating both host ecological and viral genomic features to predict likely reservoirs of OPVs.Wedemonstrate that incorporating viral genomic features in addition to host ecological traits enhanced the accuracy of potential OPV host predictions, highlighting the importance of host-virus molecular interactions in predicting potential host species. We identify hotspots for geographic regions rich with potential OPV hosts in parts of southeast Asia, equatorial Africa, and the Amazon, revealing high overlap between regions predicted to have a high number of potential OPV host species and those with the lowest smallpox vaccination coverage, indicating a heightened risk for the emergence or establishment of zoonotic OPVs. Our findings can be used to target wildlife surveillance, particularly related to concerns about mpox establishment beyond its historical range.more » « less
-
Imperiale, Michael J (Ed.)ABSTRACT Mpox disease, caused by the monkeypox virus (MPXV), was recently classified as a public health emergency of international concern due to its high lethality and pandemic potential. MPXV is a zoonotic disease that emerged and is primarily spread by small rodents. Historically, it was considered mainly zoonotic and not likely to sustain human-to-human transmission. However, the worldwide outbreak of Clade IIb MPXV from 2020 to 2022 and ongoing Clade I MPXV epidemics in the Democratic Republic of the Congo and surrounding areas are a warning that human-adapted MPXVs will continually arise. Understanding the viral genetic determinants of host range, pathogenesis, and immune evasion is imperative for developing control strategies and predicting the future of Mpox. Here, we delve into the MPXV genome to detail genes involved in host immune evasion strategies for this zoonotic rodent-borne and human-circulating virus. We compare MPXV gene content to related Orthopoxviruses, which have narrow host ranges, to identify potential genes involved in species-specific pathogenesis and host tropism. In addition, we cover the key virulence factor differences that distinguish the MPXV clade lineages. Finally, we dissect how genomic reduction of Orthopoxviruses, through various molecular mechanisms, is contributing to the generation of novel MPXV lineages with increased human adaptation. This review aims to highlight gene content that defines the MPXV species, MPXV clades, and novel MPXV lineages that have culminated in this virus being elevated to a public health emergency of national concern.more » « less
-
Kedzierska, Katherine (Ed.)Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived in vitro cellular models. However, stable and accessible bat cell lines are not widely available for the broader scientific community. Here, we generated in vitro reagents for the Seba’s short-tailed bat (Carollia perspicillata), tested multiple methods of immortalization, and characterized their susceptibility to virus infection and response to immune stimulation. Using pseudotyped virus library and authentic virus infections, we show that theseC. perspicillatacell lines derived from a diverse array of tissues are susceptible to viruses bearing the glycoprotein of numerous orthohantaviruses, including Andes and Hantaan virus and are also susceptible to live hantavirus infection. Furthermore, stimulation with synthetic double-stranded RNA prior to infection with vesicular stomatitis virus and Middle Eastern respiratory syndrome coronavirus induced a protective antiviral response, demonstrating the suitability of our cell lines to study the bat antiviral immune response. Taken together, the approaches outlined here will inform future efforts to develop in vitro tools for virology from non-model organisms and theseC. perspicillatacell lines will enable studies on virus–host interactions in these bats.more » « less
-
Mukhopadhyay, Suchetana (Ed.)ABSTRACT Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.more » « less
-
Abstract Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and—most importantly—hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.more » « less
-
Host-virus association data underpin research into the distribution and eco-evolutionary correlates of viral diversity and zoonotic risk across host species. However, current knowledge of the wildlife virome is inherently constrained by historical discovery effort, and there are concerns that the reliability of ecological inference from host-virus data may be undermined by taxonomic and geographical sampling biases. Here, we evaluate whether current estimates of host-level viral diversity in wild mammals are stable enough to be considered biologically meaningful, by analysing a comprehensive dataset of discovery dates of 6571 unique mammal host-virus associations between 1930 and 2018. We show that virus discovery rates in mammal hosts are either constant or accelerating, with little evidence of declines towards viral richness asymptotes, even in highly sampled hosts. Consequently, inference of relative viral richness across host species has been unstable over time, particularly in bats, where intensified surveillance since the early 2000s caused a rapid rearrangement of species' ranked viral richness. Our results illustrate that comparative inference of host-level virus diversity across mammals is highly sensitive to even short-term changes in sampling effort. We advise caution to avoid overinterpreting patterns in current data, since it is feasible that an analysis conducted today could draw quite different conclusions than one conducted only a decade ago.more » « less
An official website of the United States government
